ADOPTION OF A GEOCSV FORMAT FOR RAPIDLY CHANGING PARAMETERS NOT HANDLED WELL IN SEED

A PROPOSED ACTIVITY FOR THE FDSN WGV

TIM AHERN, EARTHSCOPE-OCEANS STEERING COMMITTEE

JOEL SIMON, EARTHSCOPE-OCEANS AND PRINCETON UNIVERSITY

2 2019 MONTREAL WGV MEETING

- In 2019 a GeoCSV solution was described to allow data providers a way to capture the position of moving stations
 - Focused primarily on positional data
- Targeted to moving stations such as
 - portable deployments on glaciers and ice flows
 - MERMAID acquisition systems deployed in oceans is the focus of the EarthScope-Oceans effort
 - It could capture rapidly changing azimuths for stations such as at the South Pole
- Since 2019 EarthScope-Oceans has fully implemented a solution that solves metadata capture for moving stations and some other problems as well

3 EXPANSION BEYOND "MOVING STATIONS"

- Examples of changing values not easily accommodated in SEED
 - Moving stations (latitude, longitude, elevation, depth) changing rapidly (i.e. MH)
 - Variable sample rates
 - Changing gains frequently (i.e. H2O Observatory)
- Flexible enough to allow capture of any useful information

4 THE PROPOSED FORMAT ELEMENTS

- Initial Header Rows
 - #dataset: GeoCSV 2.0
 - #created: 2021-07-28T23:25:20Z
 - #automaid: v3.4.2 (https://github.com/earthscopeoceans/automaid (doi: 10.5281/zenodo.5057096))
 - #delimiter:';
 - #lineterminator: '\n'

Sensor orientation could go here

5 POSSIBLE ELEMENTS – ESO EXAMPLE

Header Column Ren Headers																		
Туре			Time and S	SNCL			Ро	sition				S	ensor		-		Timing	
#field_unit	ISO_8601	uniti	unicess	unices	unitless	degrees_nort	degr ees_ea	istilleters	meters		initless f	actor	hertz	unit	tless	nertz		conds
#field_type	datetime	string	string	string	string	float	float	float	float		tring f	loat	float	stri	ng	float	float fl	oat
MethodIden	StartTime	Networ	k Station	Locatio	on Channel	Latitude	Longitude	Elevation	Depth		ensorDescri S	cale	ScaleFre	quer Sca	leUnits	SampleRate	TimeDelay T	imeCorrection
Data																		
Measuremer	2018-08-05T	мн	P0008		nan	-12.008233	-172.023	31	0	C	MERMAIDHy	nan	nan			nan	0.00003	nan
Measuremer	2018-08-05T	MH	P0008		nan	-12.006967	-172.018	72	0	C	MERMAIDHy	nan	nan			nan	-0.000062	nan
Measuremer	2018-08-06T	MH	P0008		nan	-12.0477	-172.013	57	0	C	MERMAIDHy	nan	nan			nan	0.437377	nan
Measuremer	2018-08-06T	MH	P0008		nan	-12.047684	-172.013	69	0	C	MERMAIDHy	nan	nan			nan	0	nan
Measuremer	2018-08-06T	МН	P0008		nan	-12.047584	-172.0142	25	0	C	MERMAIDHy	nan	nan			nan	0	nan
Algorithm:au	2018-08-08T	MH	P0008		0 BDH	-12.074427	-171.996	51	0	1531	MERMAIDHy	-149	400	1 Pa	а	20) nan	-0.29087
Measuremer	2018-08-15T	MH	P0008		nan	-12.205566	-171.903	76	0	C	MERMAIDHy	nan	nan			nan	1.643707	nan
Measuremer	2018-08-15T	MH	P0008		nan	-12.2059	-171.9040	05	0	C	MERMAIDHy	nan	nan			nan	0	nan
Measuremer	2018-08-15T	MH	P0008		nan	-12.207367	-171.90	55	0	0	MERMAIDHy	nan	nan			nan	-0.000184	nan
Measuremer	2018-08-15T	MH	P0008		nan	-12.207784	-171.905	99	0	0	MERMAIDHy	nan	nan			nan	C	nan
Algorithm:au	2018-08-16T	MH	P0008		0 BDH	-12.231257	-171.890	15	0	1527	MERMAIDHy	-149	400	1 Pa	а	20) nan	-0.242693
Algorithm:au	2018-08-17T	MH	P0008		0 BDH	-12.255579	-171.8684	42	0	1521	MERMAIDHy	-149	400	1 Pa	а	20) nan	-0.523292
Measuremer	2018-08-17T	MH	P0008		nan	-12.2612	-171.8658	81	0	0	MERMAIDHy	nan	nan			nan	0.569366	nan

6 WHAT IS BEING PROPOSED

- A method for equipment operators to capture important metadata
- Not intended as a final solution for incorporating this information into StationXML
- We think, if approved, a logical next step is to engage WGII in defining the modifications to StationXML
- Until this is done, the GeoCSV files are made available in another way
 - IRIS is making the file available through MDA
 - http://ds.iris.edu/data/reports/MH/

7 THIS APPROACH

- It is a straightforward method for instrument operators to capture data that is easily lost without some standard capture format
- Easy way to store information in a usable format
- Data collectors would not have to get into the intricacies of StationXML
 - FDSN data centers could assume the responsibility of XML conversion

8 POSSIBLE ELEMENTS AND TAGS

- Time and SNCL
- Position
 - Latitude
 - Longitude
 - Elevation
 - Depth
- Sensor
- Timing and Gain
- Anything else as needed

9 FRAMEWORK PROPOSAL WILL BE MADE AVAILABLE

4 pages

FDSN Framework Proposal for a GeoCSV format for rapidly changing parameters not handled well in SEED 20 August 2021

Proposal Phase – Community Consensus Phase Type B: new FDSN standard Submitted by EarthScope-Oceans (ESO) Tim Ahern, IRIS Emeritus and Joel Simon, Princeton

Background: As we all know, SEED and current StationXML, do not handle metadata that changes often in a compact manner. We propose a GeoCSV format to allow data producing centers to easily produce a CSV formatted file that captures most rapidly changing parameters. This model can be extended to accommodate additional rapidly changing parameters that may be specific to a given project.

This proposal is in support of a flexible and generalized approach that in theory can accommodate most if not all such parameters.