Towards new data archives & distribution mechanisms with object storage

Archival rate per year

. Data center DAS
® New types of sensors acquire vast 100 RIS |
RESIF P
amounts of data .~ GEOFON
- R
E 10 “Nerte—i— -
% . /‘,v—'
® No standard yet for archival and 3 o Large-N
distribution <, Gs?
7y //
e v
S
® Slowing down science !

0P o I g g P g0 T g e® o®

Year

From Quinteros et al., 2021



Data access from the point of view of scientific users

® large data transfer is challenging to
handle through FDSN webservices

® |ocal copies accrue storage costs

® data are not necessarily analysis-ready:
often transformed to a different data
format before analysis

— Joint initiative EarthScope & EIDA
exploring future storage solutions (adapted to archival and distribution of large data

from cloud object storage)



Joint initiative EarthScope & EIDA

¢ Test different solutions (storage architecture, file formats) for performance and
usability (TileDB, zarr, Apache Iceberg)

e Current active involvement EarthScope (Alex Hamilton, Chad Trabant), EIDA
nodes GFZ (Javier Quinteros) and EPOS-France (Jonathan Schaeffer, Laura
Ermert), Helle Pedersen, Jerry Carter, Angelo Strollo, Philipp Kastli

e Poster (Thursday evening, S02-103): Towards archiving, distributing and using
large seismological datasets.



Potential solutions: S3 storage, TileDB, zarr, Apache Iceberg

Common points: Object storage, cloud-friendly, open source, Python APls, versioning

TileDB

® Multi-D arrays (dense or sparse)

® strong community in life sciences / genomics; main development by commercial company
zarr

® Multi-D arrays (dense)

® community support including Earth science, e.g. accepted format in NASA Earth Science Data
Systems, ESA

® not as readily cloud-friendly as TileDB (objects in hierarchical directory). IceChunk may change
this in the future
Apache Iceberg
® tabular data, data themselves in Parquet format

® developed by Apache foundation



Examples of reading data from zarr

import config
import zarr
from obstore.store import S3Store

store = (

bucket=config["S3 BUCKET"],
endpoint=config["S3 SERVICE URL"],

aws_access key id=config["S3 ACCESS KEY"],
aws_secret access key=config["S3 SECRET KEY"],

virtual hosted style request=

)

s3store = zarr.storage. (store)
rows [0: 86400]
cols [0: 30]

Z = zarr. (s3store, mode="r")
data = z[rows, cols]




Examples of reading data from TileDB

import config

import tiledb

from isterre tiledb import isterre ctx
import numpy as np

ctx = (user=config["S3 ACCESS KEY"], pw=config["S3 SECRET KEY"])
["XG.01001.00.SPZ","XG.01002.00.SPZ","XG.01003.00.SPZ"]
("2020-02-20", "us")
("2020-02-21", "us")

array name = f"{config['S3 DEST BUCKET']}/nodal.tbd"

0 =0

array = tiledb. (array name, 'r', ctx=ctx)
data = array[channels, time 0: time 1]




First test results from GFZ

® Reading samples from a DAS dataset in zarr format stored on a locally hosted S3
® single-channel and multi-channel test
® influence of chunk size tested and compared to reading full miniSEED

Zarr: single-channel reading test from S3 bucket Zarr: multiple-channel reading test from S3 bucket
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Large Dataset Overview
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ARCO Storage Implementation n@ usts

Users access archive objects directly
o Expose implementation details

o Decisions about how objects are organized matter

o ldentifiers & semantic meaning in object keys (paths) become important
decisions that affect data users

The goal: Analysis Ready Cloud Optimized (ARCO)

It would be best if data providers deliver the data sets in an
archive format, adding more complexities to consider.
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Operational Requirements  ®==

Authorization granularity

o Containers for many (millions) of objects

o Can put data from multiple sources (with different authorization
concerns) in the same object

o Transactional isolation granularity
o Time-travel capability

o Consolidation and vacuuming frequency (metadata only?)
o Efficient access to subsets of the container (“slicing”)
o Language support, project maturity & longevity
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EarthScope TileDB Experience J@r muscs

EarthScope uses TileDB for GNSS observables and PPP solutions:
e Two different approaches:
o GNSS observables live in independent arrays for each station “session”
m Four dimensions: time, constellation, sat ID, signal code (L1, etc.)
o PPP solutions live in one array
m [wo dimensions: stream ID, time
e \Write frequency matters; streaming data needs to be batched
o Larger file sizes (~100-500 MB*) result in more efficient reads
o Compaction/vacuuming essential to maintain performance
m On the Observables arrays, we only compact metadata
o Fragmentation across pipelines: golang and python
m Different compaction/vacuuming implementations & cadences
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EarthScope Iceberg Experience @@g

EarthScope prototyping using lceberg in AWS for new data products
o Collecting real-time streaming data into a table set
o Testing multiple partitioning schemes
» Hands-off approach (easy):
o Managed service batches streaming data writes from Kafka to Iceberg

o Managed service automatic compaction & vacuuming

o Queries using Athena

o Early experience is very positive, but as an operator it is easy
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miniSEED in Iceberg @@s&

Goal: implement a temporary buffer of miniSEED data collected as
real-time streams in a way that is accessible for fdsnws-dataselect and
for an archiving system that makes the final miniSEED repository parts.

Early experiment details:

o Store miniSEED records directly in Iceberg

o Iceberg provides the indexing for efficient access

o lceberg + managed service provide compaction services
o Data are available with minimum latency
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High level points L ous

o Take advantage of broadly accessible, high performance object
storage systems

e Avoid points of restriction such as fdsnws-dataselect
o Adopt existing, widely supported data container
o Improved support for more dimensionality

o Support large data set access: for Machine Learning and other
large processing cases, highly parallel, read-into-memory in
many environments



