
1/7

Towards new data archives & distribution mechanisms with object storage

• New types of sensors acquire vast
amounts of data

• No standard yet for archival and
distribution

• Slowing down science

From Quinteros et al., 2021



2/7

Data access from the point of view of scientific users

• large data transfer is challenging to
handle through FDSN webservices

• local copies accrue storage costs

• data are not necessarily analysis-ready:
often transformed to a di!erent data
format before analysis

→ Joint initiative EarthScope & EIDA
exploring future storage solutions (adapted to archival and distribution of large data
from cloud object storage)



3/7

Joint initiative EarthScope & EIDA

• Test di!erent solutions (storage architecture, file formats) for performance and
usability (TileDB, zarr, Apache Iceberg)

• Current active involvement EarthScope (Alex Hamilton, Chad Trabant), EIDA
nodes GFZ (Javier Quinteros) and EPOS-France (Jonathan Schae!er, Laura
Ermert), Helle Pedersen, Jerry Carter, Angelo Strollo, Philipp Kästli

• Poster (Thursday evening, S02-103): Towards archiving, distributing and using
large seismological datasets.



4/7

Potential solutions: S3 storage, TileDB, zarr, Apache Iceberg

Common points: Object storage, cloud-friendly, open source, Python APIs, versioning

TileDB
• Multi-D arrays (dense or sparse)

• strong community in life sciences / genomics; main development by commercial company

zarr
• Multi-D arrays (dense)

• community support including Earth science, e.g. accepted format in NASA Earth Science Data
Systems, ESA

• not as readily cloud-friendly as TileDB (objects in hierarchical directory). IceChunk may change
this in the future

Apache Iceberg
• tabular data, data themselves in Parquet format

• developed by Apache foundation



5/7

Examples of reading data from zarr



6/7

Examples of reading data from TileDB



7/7

First test results from GFZ

• Reading samples from a DAS dataset in zarr format stored on a locally hosted S3

• single-channel and multi-channel test

• influence of chunk size tested and compared to reading full miniSEED



Large Dataset Overview

EarthScope
Data Services



ARCO Storage Implementation

Users access archive objects directly
● Expose implementation details
● Decisions about how objects are organized matter

○ Identifiers & semantic meaning in object keys (paths) become important 
decisions that affect data users

The goal: Analysis Ready Cloud Optimized (ARCO)

It would be best if data providers deliver the data sets in an 
archive format, adding more complexities to consider.



Operational Requirements

● Authorization granularity
○ Containers for many (millions) of objects

○ Can put data from multiple sources (with different authorization 
concerns) in the same object

● Transactional isolation granularity
● Time-travel capability

○ Consolidation and vacuuming frequency (metadata only?)

● Efficient access to subsets of the container (“slicing”)
● Language support, project maturity & longevity



EarthScope TileDB Experience

EarthScope uses TileDB for GNSS observables and PPP solutions:
● Two different approaches:

○ GNSS observables live in independent arrays for each station “session”
■ Four dimensions: time, constellation, sat ID, signal code (L1, etc.)

○ PPP solutions live in one array
■ Two dimensions: stream ID, time

● Write frequency matters; streaming data needs to be batched
○ Larger file sizes (~100-500 MB*) result in more efficient reads
○ Compaction/vacuuming essential to maintain performance

■ On the Observables arrays, we only compact metadata
○ Fragmentation across pipelines: golang and python

■ Different compaction/vacuuming implementations & cadences



EarthScope Iceberg Experience

EarthScope prototyping using Iceberg in AWS for new data products
● Collecting real-time streaming data into a table set

○ Testing multiple partitioning schemes

● Hands-off approach (easy):
○ Managed service batches streaming data writes from Kafka to Iceberg

○ Managed service automatic compaction & vacuuming

○ Queries using Athena

● Early experience is very positive, but as an operator it is easy



miniSEED in Iceberg

Goal: implement a temporary buffer of miniSEED data collected as 
real-time streams in a way that is accessible for fdsnws-dataselect and 
for an archiving system that makes the final miniSEED repository parts.

Early experiment details:
● Store miniSEED records directly in Iceberg
● Iceberg provides the indexing for efficient access
● Iceberg + managed service provide compaction services
● Data are available with minimum latency



High level points

● Take advantage of broadly accessible, high performance object 
storage systems

● Avoid points of restriction such as fdsnws-dataselect

● Adopt existing, widely supported data container 

● Improved support for more dimensionality 

● Support large data set access: for Machine Learning and other 
large processing cases, highly parallel, read-into-memory in 
many environments


